استخراج ویژگی های بافتی طیف سیگنال های ماهیچه ای و به کارگیری ماشین بردار پشتیبان به منظور دسته بندی حرکات فیزیکی

Authors

Abstract:

سیگنال­های الکترومیوگرافی(EMG) با استفاده از دستگاه استخراج سیگنال­های ماهیچه­ ای (الکترومیوگراف) و به منظور تشخیص میزان اختلاف پتانسیل به ­وجود آمده در اثر تحریک عصبی سلول­های ماهیچه ­ای جهت کاربردهای گوناگون استخراج می­شوند. یک مرحله ­ی مهم در پردازش سیگنال­های استخراج شده که تأثیر بسیار اساسی در عملکرد کلی سیستم­های کنترل ماهیچه ­ای دارد استخراج ویژگی­های مؤثر از این سیگنال­ها است. در این مقاله به منظور بهبود ویژگی­های زمانی، فرکانسی و زمان-فرکانسی، روش­های استخراج خصوصیات بافت از تصاویر زمان-فرکانس سیگنال با استفاده از توصیف­گرهای الگوی دودویی محلی (LBP) و ماتریس هم­رخداد (GLCM) مورد بررسی قرار گرفته است. با تحلیل بافت تصاویر طیف سیگنال­های ماهیچه ­ای روابط بین فرکانس­های مختلف در زمان­ های مختلف استخراج می­شود. در نتیجه، روابط مابین اطلاعات زمان و فرکانس به صورت توأمان به عنوان نماینده سیگنال در نظر گرفته خواهد شد. در این تحقیق، جهت بررسی کارایی این روش استخراج خصوصیات از پایگاه داده ­ی "سیگنال­های ماهیچه ­ای حرکات فیزیکی"، استفاده شده است. همچنین، جهت دسته­ بندی بردارهای ویژگی استخراج شده، ماشین بردار پشتیبان در دو حالت کلی و با تفکیک باندهای فرکانسی بکار گرفته شده­ است. در نتیجه­ ی آزمایشات، دقت دسته ­بندی 98/75% با استفاده از روش تفکیک باندهای فرکانسی حاصل شده است که در مقایسه با نتایج به ­دست آمده از روش­های قبلی دقیق­تر است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

دسته بندی سبک های یادگیری با استفاده از ویژگی های رفتاری و ماشین بردار پشتیبان دو قلو

موفقیت تحصیلی دانشجویان از اهداف مهم در محیط‌های آموزشی است. یکی از عوامل مهم در تحقق این هدف، توجه به سبک یادگیری دانشجویان است. آگاهی از سبک یادگیری دانشجویان به طراحی یک روش مناسب آموزش کمک می‌کند. لحاظ کردن یک شیوه مناسب آموزش باعث بهبود عملکرد دانشجویان در محیط آموزشی می‌شود. در این مقاله، هدف ساخت یک مدل برای تشخیص خودکار سبک‌های یادگیری است. بدین منظور از یک محیط آموزش الکترونیکی متشکل ا...

full text

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

full text

دسته بندی مفهومی اسناد فارسی به کمک ماشین بردار پشتیبان

دسته بندی اسناد، فرآیندی است که اسناد را به یک یا چند دسته از قبل تعریف شده تقسیم می کند. در این پایان نامه، یک سیستم دسته بندی مفهومی اسناد فارسی با استفاده از ماشین بردار پشتیبان ارائه شده است. همچنین، تاثیر رهیافت های مختلف پیش پردازش شامل شاخص گذاری اسناد، ریشه یابی، بردار نماینده و انتخاب زیر مجموعه ای از ویژگی ها، بر روی کارایی سیستم مطالعه شده است. علاوه بر این، کارایی سیستم پیشنهادی با ...

دسته بندی استوار و ماشین های بردار پشتیبان

دسته بندی از مسائل اصلی در یادگیری ماشین است ‎‎به طوری که مسائل متعددی از دنیای واقعی را می توان به صورت آن مطرح و حل کرد. یکی از روش های قدرتمند که در حال حاضر به صورت گسترده برای مسئله دسته بندی مورد استفاده قرار می گیرد، روش ماشین های بردار پشتیبان است. یک فرض اساسی در این روش این است که داده ها قطعی هستند در حالی که در دنیای واقعی داده ها معمولا دارای عدم قطعیت هستند. عدم قطعیت داده ها در م...

15 صفحه اول

تخمین بعد ذاتی و کاهش ابعاد داده های فراطیفی به منظور طبقه بندی با استفاده از روش های درخت تصمیم، ماشین بردار پشتیبان و شبکه عصبی

طبقه­ بندی تصاویر فراطیفی، به دلیل کاربردهای برجسته این تصاویر در حوزه­ های مختلف مانند نظامی، مدیریت و برنامه­ ریزی شهری، مدیریت منابع و کشف معادن، یکی‌ از مسائل بسیار مهم در پردازش تصاویر فرا­طیفی به شمار می‌‌آید. تصاویر فراطیفی به دلیل دارا بودن توان تفکیک طیفی بالا، اطلاعات قابل توجهی در ارتباط با ترکیب شی‌ با صحنه تصویر­برداری در اختیار کاربر قرار می­دهند. بزرگی ابعاد این تصاویر نه تنها مح...

full text

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

در بازشناسی الگو یکی از روش های افزایش دقت بازشناسی، بهره گیری از روش های متمایز ساز است. این روش ها یا به صورت تبدیل متمایزساز بر ویژگی ها بکار می روند یا از روش های یادگیری متمایزساز برای آموزش دسته بند استفاده می کنند. معمولا معیار تبدیلات متمایز ساز متفاوت با معیار آموزش و یا خطای دسته بندهای متمایز ساز است. در مقاله حاضر، برای هماهنگ کردن معیار تبدیل ویژگی و نیز معیار دسته بندی ماشین بردار...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  15- 28

publication date 2018-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023